A two-port network has scattering parameters given \(\left[ s \ri

A two-port network has scattering parameters given \(\left[ s \ri
| A two-port network has scattering parameters given \(\left[ s \right] = \left[ {\begin{array}{*{20}{c}} {{s_{11}}}&{{s_{12}}}\\ {{s_{211}}}&{{s_{22}}} \end{array}} \right]\). If the port 2 of the two-port is short-circuited, the s11 parameter for the resultant one-port network is

A. <span class="math-tex">\(\frac{{{s_{11}} - {s_{11}}{s_{22}} + {s_{12}}{s_{21}}}}{{1 + {s_{22}}}}\)</span>

B. <span class="math-tex">\(\frac{{{s_{11}} + {s_{11}}{s_{22}} - {s_{12}}{s_{21}}}}{{1 + {s_{22}}}}\)</span>

C. <span class="math-tex">\(\frac{{{s_{11}} + {s_{11}}{s_{22}} + {s_{12}}{s_{21}}}}{{1 - {s_{22}}}}\)</span>

D. <span class="math-tex">\(\frac{{{s_{11}} - {s_{11}}{s_{22}} + {s_{12}}{s_{21}}}}{{1 - {s_{22}}}}\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: B

SOLUTION

Concept:

Consider a two-port network as shown:

Where,

a1 = Incident wave at port 1

b1 = reflected wave at port 1

a2 = Incident wave at port 2

b2 = reflected wave at port 2

Scattering parameters are defined as:

\({s_{11}} = \frac{{{b_1}}}{{{a_1}}},\;\;{s_{12}} = \frac{{{b_1}}}{{{a_2}}}\) 

\({s_{21}} = \frac{{{b_2}}}{{{a_1}}}\;and\;{s_{22}} = \frac{{{b_2}}}{{{a_2}}}\) 

\({s_{11}} = \frac{{{b_1}}}{{{a_1}}} = \frac{{V_1^ - }}{{V_1^ + }}\) 

\({s_{12}} = \frac{{{b_1}}}{{{a_2}}} = \frac{{V_1^ - }}{{V_2^ + }}\) 

\({s_{21}} = \frac{{{b_2}}}{{{a_1}}} = \frac{{V_2^ - }}{{V_1^ + }}\) 

\({s_{22}} = \frac{{{b_2}}}{{{a_2}}} = \frac{{V_2^ - }}{{V_2^ + }}\) 

V+ = Incident voltage wave

V- = Reflected voltage wave

Boundary conditions in a Transmission line:

At port 2:

\(V_2^ - = - V_2^ + \) 

or b2 = -a2   ---(1)

Now, b1 = s11a1 + s12 a2   ---(2)

b2 = s21 a1 + s22 a2     ---(3)

From (1) and (2), we get:

-a2 = s21 a1 + s22 a2

- (1 + s22) a2 = s21 a1

\({a_2} = \frac{{ - {s_{21}}\;{a_1}}}{{1 + {s_{22}}}}\)     ---(4)

From (1) and (4), we get:

\({b_1} = {s_{11}}\;{a_1} + {s_{12}}\left( {\frac{{ - {s_{21}}{a_1}}}{{1 + {s_{22}}}}} \right)\)

\({b_1} = \frac{{\left( {{s_{11}}\left( {1 + {s_{22}}} \right) - {s_{12}}{s_{21}}} \right){a_1}}}{{1 + {s_{22}}}}\)  

\({s_{11}} = \;\frac{{{b_1}}}{{{a_1}}} = \frac{{{s_{11}} + {s_{11}}{s_{22}} - {s_{12}}{s_{21}}}}{{1 + {s_{22}}}}\) 

Option B is correct.

Important:

1) If the port is short-circuited:

Reflected voltage wave = - Incident voltage wave

2) If the port is terminated with load, such that ZL = Z0, with Z0 the characteristic impedance of that port, then the reflected wave = 0